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A method of damping structural vibrations using optimization techniques is presented and applied to a tethered satellite system. 
Such systems show large displacements and require active or passive damping mechanisms. A tethered satellite system is modelled 
by the method of multibody systems using symbolic equations of motion. Active damping is provided by an actuator between 
the main body and the tether. The control parameters are optimized. The energy decay of the system is used as the performance 
criterion. The complex dynamics of the motion of this system are demonstrated in simulations with different initial conditions 
including structural vibrations. It is shown that an optimization process enables the control parameters be improved with respect 
to the dissipation of energy of longitudinal structural vibrations. 0 2001 Elsevier Science Ltd. All rights reserved. 

A tethered satellite system consists of two or more satellites attached to each other by a long string. 
Such systems show high dynamic potential with various applications [l]. In this paper, the damping of 
structural vibrations during the tethered deployment of a reentry capsule from the International Space 
Station is considered [2]. 

The technique employed is based on the optimization of multibody system; [3,4]. The modelling of 
mechanical structures as multibody systems is a well-established approach if large motions and 
small deformations occur [5-71. For optimization purposes, the equations of motion of such models 
should be derived in symbolic form. The parameters can thereby be varied without a new derivation 
of these differential equations. This can be done automatically by computer codes, for example, by 
NEWEUL [8]. The optimization process itself requires algorithms for searching for a minimum, for 
integrating the equations of motion and possibly for a sensitivity analysis, which are included in the 
AIMS program [9]. 

The idea of using a system of two or more satellites connected by a long thin tether dates back several 
decades [lo, 111. The most realistic applications suggested are probably the creation of artificial gravity 
by two satellites circling each other, the gravitational stabilization of a two-body system, the launching 
of small satellites and the deorbiting of a reentry capsule. An overview over the suggested applications 
for tethered satellite systems is given in the book by Beletskii and Levin [l], which can be regarded as 
the standard work on space tether systems. This book treats the dynamical effects of massless and massive 
elastic tethers in various configurations and missions. There is also a literature on the deorbit manoeuvre, 
treated from the point of view of aeronautical and spacecraft engineering [2,12]. 

As regards the dynamics of tethered satellite systems, a large number of papers have been published 
during the last few years. In particular, in [13-161 the control of tether vibrations is considered, and a 
suitable mechanical model is presented in [17]. The dynamical analysis of tethered satellite systems in 
[18] should also be mentioned. 

1. FORMULATION OF T,HE PROBLEM 

In this paper, the tethered deorbit of a reentry capsule without a rocket propulsion system is considered 
[12]. Either a static release (the left side of Fig. 1) or a dynamic one (the right side) is possible (S is 
the Space Station, T is the tether, P is the capsule, C is the tether cutoff point and o,~ is the orbital 
angular velocity). In the first case, the capsule is slowly lowered radially to the Earth, resulting in a lower 
orbit velocity. In the second case, the tether is deployed more rapidly leading to a lateral offset due to 
the Coriolis force. When the tether deployment is stopped, the capsule swings back towards the local 
vertical, which corresponds to braking of the capsule. The advantage of a dynamical release is that the 
required tether length is only about half the length necessary for a static release. 
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Fig. I 

In this paper, the back swing of the capsule during the dynamic release is considered and the damping 
of the resulting structural vibrations by active control is investigated. For this mission, the tether will 
typically have a length of 20 km with a diameter of only 0.5 mm. The mass of the return capsule is 170 
kg, which corresponds to the prototype reentry capsule [2]. The parameters of the station are chosen 
to be those for the International Space Station, which is planned to fly with an overall mass of 415 t at 
an altitude of 400 km. 

2. THE MECHANICAL MODEL 

The tethered satellite system is modelled as a multibody system, as shown in Fig. 2. It consists of two 
rigid bodies in free space representing the station S and the return capsule with payload P. These two 
bodies are connected by a chain of n particles (point masses) which are interconnected by spring damper 
combinations representing an elastic tether. This model is similar to the bead model [17] but differs 
with regard to the two end bodies, which may move completely freely in space. The parameters of the 
particles and spring damper combinations are chosen such that they represent an equivalent element 
of the tether of length I: 

m = o&l, c = E&l, d = D# 

where pr is the density, AT is the cross-section, ET is Young’s modulus and Dr is the damping constant 
of the tether material. For a very long thin tether, usually Kevlar or Dyneema are considered as 
appropriate materials [19]. The length 2 of the tether elements depends on the discretization 

where LT is the overall length of the tether. For validation purposes IZ = 50 particles were used. In the 
optimization process n = 20 since the trajectories showed no significant differences. 

The equations of motion are comparatively simple if all generalized coordinates are chosen as absolute 
coordinates given in the non-rotating Earth fixed system of coordinates 

Fig. 2 
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y=IIX,T A; X; X; . . . X,T X; A; 11’ 

where Xi is the coordinate vector of ith body centre of mass and 4 is the vector of its attitude angles. 
The subscripts i denote the tether particles, i = S for the Space Station and i = P for the return capsule. 
The equations of motion then take the form 

y=z, Mi+k=q (2-l) 

where z is the time derivative vector of the vector y, M is a positive definite block diagonal inertia matrix 

M = diag)lMs m m . . . m Mpll 

k is a (3n + 12) - dimensional vector whose non-zero elements correspond to gyroscopic terms quadratic 
in the velocities in the equations of motion of the end bodies, and q is the generalized forces vector, 
so that the force components for the ith particle take the form 

It can be seen that the motions of the particles are coupled only via the generalized forces in the 
vector q. For the x-direction these are 

Fxi = F~xi + Fc, + FDxj - Fcx,._, - FD ,_ x, I (2.2) 

where FGti is the gravitational force on the ith particle, F,-- and FDti are the spring and damper forces, 
respectively, between particles i + 1 and i and Fcti_l and FDx_l are the spring and damper forces between 
particles i and i - 1. With mE representing the mass of the Earth, y the gravitational constant and Z, 
the unstretched spring length, are obtain 

FG.ri 
=-m,ym$, Ri =(_x,? +y,? +z,?)% 

i 

Fcri = C(fi - t’o>u. 
4 

t’i = [(xi+* -xi)* +(yi+l -Yi>* +(Zi+] -Zi)*J’ 

FD,ri = d 
jr1. 
$$ (4+l 

1 
, ii =$ 

It turns out that coupling between the directions occurs only via non-linear terms. Linearization about 
the quasi-static equilibrium position 

Zi =Zi()+&i* ZiO = 0, ii0 =o, ii0 = 0 

leads to a decoupling of the in-plane and out-of-plane motions [16]. Since the coupling is an important 
effect when investigating the damping of a tethered satellite system, the complete non-linear equations 
are considered in this paper. 

To reduce the vibrations by active damping control of the tether, a winch is employed. It is represented 
in the model by a force actuator at the space station S. Therefore, the actuator force F,, is added to 
the applied forces in the vector q, e.g. the term Fact(xs - xl)/Zs is added to Fi(i = 1) in Eq (2.2). 

As control laws for the actuator force Fact several linear relations can be found in literature [15]. For 
longitudinal control the following is recommended 

F,,, = k,l+ k,i (2.3) 

where I = Zs is the distance between the station and the uppermost particle. For lateral control the 
following linear law can be used 

F,,, = k,8+ k&I 
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where 8 is the angle of inclination of the tether measured at the station. The non-linear relation 

has also been proposed [13]. 
To reduce the influence of high-frequency oscillations on the controller a PTi filter is used between 

the sensor and the controller with a cutoff frequency of 1 s-l. This frequency is significantly higher than 
the vibration frequency. 

3. ANALYSIS OF THE MOTION OF THE TETHERED 
SATELLITE SYSTEM 

The dynamics of the tethered satellite system were investigated numerically in two cases. The first case 
describes vibrations in the tether during station-keeping. The second case describes the motion during 
a three-dimensional transverse swing of the tether, where the effects of the non-linear coupling terms 
can be observed. 

In both cases the station moves around the Earth as described in Section 1, but the orbit is not an 
ideal circle due to small perturbations of the initial conditions and structural vibrations. 

Stationkeeping. In the stationkeeping operation the tether hangs straight down from the station with 
the payload pointing towards the centre of the Earth, while the complete system is moving in a near 
circular orbit. In order to compare the simulation results, the parameters are chosen as in [14]. 

LT= lOOkm, pT=5.76kgflun, Mp=500kg,EAr=2.8x1@N 

Additionally, a small internal damping D = 2500 N s, as in [19], is taken into account. Initially, the 
system is experiencing a large longitudinal vibration with no declinations from the vertical. 

The results of the simulation are shown in Fig. 3, where rp is the depth of the payload below the station, 
always pointing towards the centre of the Earth, and Ui is the transverse in-plane motion of the ith particle 
or the pay-load P, respectively, perpendicular to r. Non the lower scale is the number of orbits. It can 
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Fig. 3 
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be seen that the longitudinal vibration also leads to a transverse vibration of the tether and a small 
vibrational motion of the payload due to the Coriolis force. Obviously the energy initially stored in the 
longitudinal vibration is being transferred to transverse in-plane motions. 

The normalized frequencies o. = o/o,,,~ of the lower modes resulting from the simulation are listed 
below. The corresponding values obtained with the linear model [14] are shown in brackets for 
comparison. The librational frequency is equal to 1.758 (1.732), the first longitudinal frequency is 55.7 
(54.3) and the first transverse frequency is 57.7 (59.6). 

The frequencies agree quite well. The small differences can be explained by non-linear effects. For 
a simplified and completely linearized model with small displacements, the vibrational frequency of 
&.I 0& can be calculated analytically [20]. The difference of 1.5% between the analytically calculated 
vibrational frequency and that obtained by simulation can be explained by the non-linear vibrational 
motion and the slightly elliptic orbit of the station. 

A three-dimensional swing. The second case shows a vibrational swing of the tethered satellite. The 
tethered satellite has initially a large transverse deviation from the quasistatic equilibrium position in 
both the in-plane and out-of-plane direction. The parameters are chosen for the mission also described 
in Section 1 as 

Lr=20km, p r=0.3kg/km, Mp=170kg,EAr=3.15x104N, D=25OONs 

The results of the simulation are shown in Fig. 4 where rP is again the depth of the payload below 

rp. km 

I 1 I 

0 0.125 0.250 N 

Fig. 4 
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the station, Ui is the transverse in-plane motion and Wi is the transverse out-of-plane motion. The angles 
of the payload BP and ?(p relative to they and z axes are measured in the body fixed system of coordinates. 
In addition to the motion of the payload, the transverse motion of the 7th and 14th particle are shown. 
Small longitudinal vibrations have no appreciable influence on the large-scale transverse motion. 
However the longitudinal motion of the tether excites a tumbling motion of the payload via non-linear 
coupling. When the vibrational swing completes a half period, invertion of the payload occurs. This is 
clearly a very undesirable effect, especially, when the payload is to be cut off and to enter the atmosphere 
along a specified path. Therefore an additional damping mechanism to control the payload motion is 
necessary. This simulation shows that the payload cannot in general be modelled as a point mass. It is 
necessary to use the rigid body model with rotational degrees of freedom. 

4. OPTIMIZATION 

To reduce the vibrations of the tether active damping by the tether winch is used. The controller gains 
and the structural parameters are adapted to each other by an optimization process. Since the optimiza- 
tion requires time consuming integrations of the equations of motion for each set of design variables, 
a deterministic algorithm must be chosen that requires a relatively small number of iteration steps. In 
this paper the algorithm from [21] is used, which is based on the method of sequential quadratic 
programming (SQP) [22]. Apart from function evaluations the algorithm requires the calculation of 
sensitivities which are computed by Automatic Differentiation [23]. 

As a reference for evaluating the dynamical behaviour of the tethered satellite system, the back-swing 
of the payload, as described in Section 1, is considered using the above parameters. The initial conditions 
for the system of differential equations (2.1) follow from a tether that is hanging in a straight line with 
a large lateral in-plane direction. Additionally, a small longitudinal direction is assumed, so that 
longitudinal and lateral oscillations occur. 

If structural parameters such as the tether stiffness are varied during the optimization process, it is 
recommended that the initial conditions are defined in such a way that the initial energy is independent 
of these design variables, e.g. the energy stored in the stiffness is constant. This is of particular importance 
when the energy of the vibrations is taken as an optimization criterion. Other possible criteria are the 
displacements of the payload or the tether, i.e. displacements of some particles. 

In this paper optimization with respect to the longitudinal tether vibrations is considered using the 
energy criterion described above 

Optimization with Respect to Longitudinal vibrations. To reduce the longitudinal vibrations the control 
law (2.3) for the actuator is simply chosen in the form 

F,, = k,l+ k,i 

where the gains ki and k2 are design variables. The optimization criterion is the energy criterion 

E = a ; M,(v, - v,.&~ + +.A$ 
> 
dt, uEf =o,R, 

where RP is the distance of the payload from the centre of the Earth and AZ, = AZ&) is the overall 
stretch of the tether. 

The results are given below 

Parameter kilci k2/di 

Initial value 0 10 

Optimized value -0.275 101.08 

Limits of variation -0.5 . . . 10.0 0 . . . 1000 

and shown in Fig. 5. The thick curve in the left part shows the low-frequency motion; the thin curves 
in both graphs correspond to the initial values of the parameters, while the curves of normal thickness 
represent the optimized parameters. W, is the potential energy in a stretched tether. 

The optimized parameters lead to smaller amplitudes of the longitudinal vibrations while the large- 
scale motion is not affected. This is shown in Fig. 5 for a depth rp around the tether cutoff point at 
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Fig. 5 

about 800 s. In this graph the optimized dynamics are shown with respect to low frequency motion 
without structural vibrations. It can further be seen that the energy in the stiffness is dissipated more 
rapidly than with the initial parameters and, of course, also more rapidly than without active damping. 
Obviously, active control of the tether winch is more suitable for the purpose of providing additional 
damping to the tethered satellite system and stabilizing of motion in this way if appropriate parameters 
are chosen. 

F. D. acknowledges the support of the German Research Foundation (DFG), Special Research 
Program SFB 409 “Adaptive Aero- and Lightweight Structures” and Project Bl “Global Optimization 
of Structures and Controllers”. 
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